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IN A L I N E A R L Y  S T R A T I F I E D  L I Q U I D  O F  F I N I T E  D E P T H  

I .  V.  S t u r o v a  UDC 532.593 

~1. In o r d e r  to investigate the internal  waves caused by the elongation of an axially s y m m e t r i c  body 
moving hor izonta l ly  at constant veloci ty  U in a s t ra t i f ied  liquid, we consider  the s ta t ionary  problem of the flow 
of a uni form s t r e a m  of heavy liquid of finite depth past  apoin t  source  and sink of equal magnitude m which are  
si tuated below the f ree  sur face .  The method of solving this problem is analogous to [1], in which we invest i-  
gated the case of an unbounded liquid. 

The source  and sink are si tuated at a depth h below the unper turbed f ree  su r face ,  y = 0 ,  of the hor izonta l  
layer  of liquid, - r x~ z < ~o, - H  - y -  0. The line s e g m e n t  connecting the s ingular i t ies  is of length 2a and 
para l l e l  to the x axis, which coincides with the d i rec t ion of the veloci ty  vec to r  of the liquid far  ups t ream.  In 
the unper turbed state  the distr ibution of the liquid densi ty has the fo rm 

P0(Y) = 98(1 --  c~y), - -H ~ y ~.~ 0, ~ = cons t~  0. (1.I) 

We assume that for  sufficiently deep immers ion  and weak s t ra t i f icat ion,  the flow past  this combination of 
source  and sink is equivalent  to the flow past a closed axially s y m m e t r i c  body (analogous to an unbounded 
homogeneous liquid). The radius R of  the midsect ion,  the elongation d of the body, and the veloci ty  U of the 
fundamental s t r e a m  uniquely de te rmine  the values of a and m [1]. 

fo rm 
In the l inear  formulat ion,  making use of the Boussinesq approximation,  the equations of motion have the 

(1.2) OulOx. + avlOy + ow/az = mIa(x + a) -- 6(x --  a)16(y + h)~(z), 

9s UOu/Ox = --ap/ax,  p~ USv/Ox = --op/oy - -  gp, p~ Uaw/Ox = --apOz, 

UOp/Ox ~ apsv = 0 

with the boundary conditions 

v = 0 ,  y = 0 ,  y = - - H ,  u, v, w, p, P - ~ 0 ,  x*~-z:--~co,  

where  u, v, w, p, and p are  the per turba t ions  of the components of the veloci ty vec to r  in the d i rec t ions  of the 
x, y, and z axes,  the p r e s s u r e ,  and the density which are  caused by the p resence  of the s ingular i t ies  in the 
or ig inal ly  unper turbed flow; g is the acce le ra t ion  of gravi ty;  and 6 is the Dirac del ta  function. 

The f ree  sur face  is replaced b y a  r ig id  Wlid w, shloe for  sufficiently deep immers ion  the sur face  waves 
are  negligibly smal l  and the in te rna l  waves, for  weak s t ra t i f ica t ion,  cause p rac t i ca l ly  no dis tor t ion in the shape 
of the f ree  sur face  [1, 2]." 

The function 7 (x, y, z), de termining the ve r t i ca l  deviat ion of a liquid par t ic le  f rom its unper turbed  state,  
sa t is f ies  the l inear tzed  condition ~ / ~ x  =v/U. 

Introducing the d imens ionless  var iab les  (x , ,  y , ,  z , ,  h . ,  H , ,  7 , ,  a , ) =  (1/R)(x, y, z, h, H, 7, a), (u . ,  v , ,  
w .  ) = (~/U)(u, v, w), and m ,  = m/UR z, we reduce Eq.  (1.2) to a single equation fo r  the function v ,  (the subscr ip t  
a s t e r i sk  will be omit'tbd f rom now on): 

0 5  " o 
Av + SA~.v r a ~  (y + h) o~ = ~ [5 (x  T a) - -  8 (x  - -  a)] 6 (z ) ,  
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where  S =agR~'UZ; A and A 2 a re ,  r e s p e c t i v e l y ,  the t h r e e - d i m e n s i o n a l  and t w o - d i m e n s i o n a l  (with r e s p e c t  to x 
and z) Lap l ace  o p e r a t o r s .  

Applying the F o u r i e r  t r a n s f o r m  

S (1.3) 

fo r  r e a l  # and v, we obtain for  the funct ion f the o r d i n a r y  d i f fe ren t ia l  equat ion  

l "  - -  ( k~ - -  ~) f  = 2ira sin ]~a. 8'(y + h) 

with the boundary  condi t ions  

l = O ,  y = O , y = - - H ,  

the solut ion of  which has  the f o r m  

] = ira sin ~ta [ sgn (y -~- h)e ~ I y-{-h I _.~, e--M(yTh) 

w h e r e  k* = v* -{- ~*; ~. = Sk*ll~'; M = (/P - -  ~ . ) l j * .  

[1]) 

2shM (H --~ y).r 1 
shMH j ' 

Applying the i nve r se  F o u r i e r  t r a n s f o r m ,  for  the funct ion v(x, y, z) we obtain (in a m a n n e r  analogous to 

i (1.4) (~, y, ~) = ~ d"~d~ o'~I~ = ~ R~ S ~ ' ~  oos ~.!  ~ ,  

or, in t roduc ing  a change o f  v a r i a b l e s ,  

[~-----ksinO~ v----kcosO~ x----rcos~p~ z=rsin(p~ 
g/2  

~(r, ~, v) = ~ R e  ~ s01 ki(1~, 0)[d ~'s'n(~ + d~'"(~-~,] dk. (1.~) 
0 0 

In this  p r o b l e m ,  what  is of  ch ie f  i n t e r e s t  is the inves t igat ion of  in te rna l  waves  at long d i s t ances  behind 
the body; t h e r e f o r e ,  in (1.5), when we c a r r y  out  the in tegra t ion  in the complex  k-p lane ,  we shal l  have left only 
s imple  in teg ra l s ,  r e s i d u e s  of  the in tegrand  at the poles ,  which a re  the roo t s  of  the equat ion  sinhMH =0. F o r  
k > ~ this  equat ion  has  no r e a l  r oo t s ;  fo r  0 -< k -  < k t h e r e  a re  N(0 ) = E[H4S-~r s in 0 ] (E [] is the in tegra l  p a r t  of  
a number )  pos i t ive  roo t s  kn=  ( S / s i n  2 0-n2v2/H2)Y'~(n = 0 . . . . .  N). Consequent ly ,  

huh (1.6) 
v(r,  ~ ,  y) = A sin(aknsin0 ) cos --H--- . BD+ dO + 

L "6 n = i  

-[- sin (akn sin0)cos ( -~-~) .BD_dO,  
(p n = l  

where  A = ~ 2 m / H ~ ;  B ---- n sin (nny /H) ;  D~ = cos (rk~ sin (0 ~ r o the r  d e s i r e d  funct ions u, w, and ~? will  
have  analogous  f o r m s ,  and fo r  u we will  have 

A = 2nra /H a, B = n ~ sin 0 cos (nuy /H) / k~ ,  D+ ----- sin (rk n sin (0 :t: (p)), 

fo r  w we wil l  have 

A = 2 a m / H  a, B = n ~ cos 0 cos (n~y /H) /ka ,  D• = +__sin (rknsin(0 ___ q~)), 

and for  ~ we will  have  

A = - - 2 r n / H  ~, B = n sin (nay /H) / kns in  9, D• = sin (rk~ sin (0 ~ cp)). 

In the case  o f  an unbounded liquid we obtain,  in p a r t i c u l a r ,  fo r  ~ (r, cD, ~) (y = y + h) 

- r ~/2 l / S / s i n  0 

~l(r ' (P, ~-) m / ! ' d 0 !  O(k, 0 ) s in ( rk s in (0 -F  = - - -~-  (p))dk ~- (1.7) 

~/2 ] /~ / s in0  

cp 0 J 
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where  (I)(k, e) = sin (ak sin 0) s in  (~VS] sin~ k')l sin 8, which is analogous to fo rmula  (29) of  [11 for  a ~ < ~  1. 
Applying the s t a t i ona ry -phase  method for  the asympto t ic  e s t ima t ion  of the in tegra ls  in (1.7) as x 2 ~-y2 . z  ~--- ~, 
we obtain 

($.8) 
~(x, u, z ) =  " s i n (  = V ~ y  ) 

"~" (y~ .3~ Z~)I/2 (Z' JC #= 71- Z =) i/2 X 

• (p + z~) (~ + y~ + z~) '1/2 v ~ ~-~ 

which in the case of a dipole (a=0 ,  ma=Tr) coincides with formula (6.10) of [31. In [11 we gave the results of 
the numerical  integration of (1.7); comparison of these with (1.8) shows that the asymptotic solution can be 
taken for x >~ 4~/1/~. 

The investigation of the integrals in (1.6) as r-* oo will  be carried out by the stationary-phase method. To 
do t h i s ,  w e  f ind  t h e  r o o t s  o f  the  e q u a t i o n  ,I,'(O) = 0 ,  w h e r e  q,(O) = k  n s i n  ( 0 + ~ ) .  F o r  o u r  d e t e r m i n a t i o n  o f  t h e  s t a -  

t i o n a r y  p o i n t s ,  w e  o b t a i n  
( 1 . 9 )  b cos 8 sin s 0 n ~  ~ 

tg q~ = %= f(O), f ( O ) =  i_~: ~ , b = -~-~. 

For  0 < 0 < ~/2 the function f(0) is posi t ive,  and, consequently,  s t a t ionary  points a re  poss ib le  only for  the 
second in tegra l  in (1.6). For  n-<n0 [n0=N(~2)]  the re  a re  two s ta t ionary  points el, 2 if tan ~ <f(0 m) (01 <0 m < 
82) and one s t a t iona ry  point if tan r =f(Sm);  if tan ~v > f(0m), there  a re  no s t a t ionary  points  (0m = a rcs in  ( (2-  
4~-3b)/b) l /~) .  F o r  n > n o the re  ex is t s  one s t a t ionary  point 0 i ff s i n ~  ~ u]/b-. 

The final exp res s ion  for  the function ~/(r, go, y) has  the f o r m  

' ~1 (r, ~ ,  y) = - -  ~ - -  ~ r COS (p * = l  

/Vt 

• sin (rkin sin (0in - -  (P) + (--  i) t n/4) -4- ~.~ AnB (kin, 0*.) sin (rkln sin (Oxn --  q)) - -  ~/4)], 
.a=,..,,+/ 

where  

N,  = N(~); An ---- sin (n.ny/H) cos (n.uh/H); 

B (k, 0) --= sin (ak sin 0). r I -- b sin' {) ] 1/2 
[ k s i n 0 . 1 3 - - 4 s i n = 0  ,-~ b sinaO J " 

The exp re s s ions  for  the components  of  the ve loc i ty  v e c t o r  of t h e p e r t u r b e d  flow a re  analogous in form.  It is 
in teres t ing to note that for  a liquid of  finite depth the in ternal  waves  a r e  concentra ted  within the angle [~p[-< 
~m,  where ~ is the m a x i m u m  of the values  arcsin(HIZS-/~(no + i))and arc tan]((}m(n0)),while in the case  of an un-  
bounded liquid they cover  the en t i re  h a l f - s p a c e  x > 0. 

The i socurves  of the function 5V/q~R for  the value xwrS/~ = 1 5 a r e  shown in Fig. 1 for  I-I4-S/R =3, h~rS/B = 1p 
d =1. The roots  of  Eq. (1.9) were  de te rmined  numer ica l ly .  Unlike the case  of  an unbounded liquid, the wave 
wake becomes  a s y m m e t r i c  for  h ~ H/2, b roader ,  and more  subdivided. 

.~2. To invest igate  the internal  waves induced by the col lapse  of  the mixing zone, we cons ider  a plane 
nons ta t ionary  p rob lem of flow a r i s ing  as  a r e su l t  of the col lapse  of an initially c i r c u l a r  spot of comple te ly  or  
pa r t i a l ly  mixed liquid surrounded by a liquid which is l inear ly  s t ra t i f ied  in densi ty.  A number  of s tudies have 
been published on this p rob lem.  The authors  of [4-6] give the r e su l t s  of the numer i ca l  solution of a complete  
s y s t e m  of N a v i e r - S t o k e s  equations (in [4,61 the Bouss inesq approximat ion is used), and the authors of [3, 7-10] 
make an analyt ical  investigation of the col lapse  p r o c e s s  on the bas is  of the l inear ized equations of  a nonviscous 
liquid ([3, 8, 9] cons ider  an unbounded liquid, while [7, 10J deal  with a liquid layer  of finite depth). In [10], un-  
like [3, 7-9], the Boussinesq approximat ion  is not used,  and a n u m e r i c a l  compar i son  with [71 shows that the 
d i f ference  between these  solutions is insignificant.  

In the p re sen t  study the internal  waves genera ted  by the col lapse have been invest igated by a method 
analogous to that of  Sec. 1, and the r e su l t s  obtained are  m o r e  suitable for  numer i ca l  integrat ion than those of 

[7]. 
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In the p[ane of  the motion we set up a Car tes ian sys tem of coordinates y, z (the y axis is directed v e r t i -  
cal ly upward~ and tim z axis  coincides withthe f ree  surface) .  At the initial instant of t ime  t = 0~ within a c i rc le  
of radius R with center  at the point y=  - h ,  z =0 (h > R), the liquid is mixed, so that the density perturbation 
has the form 

z, O)=le~c(Y +h)P~ ,  V ( g  +h)~  + z a <  R,  
P(g, / o , V ( y + h p + Z ~ > R ,  0 < e < ~ l ,  

where in the case of a completely mixed spot e = l ,  and outside the spot the distribution of density is determined 
by (1.1). 

The l inearized equations of motion in the Boussinesq approximation have the form 

OvlOy 4- OwlOz = O, p~dvlOt = --Op/Oy - -  gp, (2.1) 

psOw/Ot = --Op/Oz, Op/Ot - -  ap~v = 0 

with the boundary conditions 

and the initial conditions 

v = 0 ,  y = 0 ,  y = - - H ,  v, w, p, p--~0, Z -->. -~ :~o 

where 
v = w = p = O, 9 = Po(Y)F(Y,, Z)~ t = O, 

F(y, z) = e[po(--h)/p0(y) - -  1 ]H(g + h + R)H(R  - -  it - -  h)H(z + 

+ V ~  - (y + h )2 ) i t (V  m - (y + h)2 - -  ~). 

Here,  as before,  v, w, p, and p are  the perturbat ions of the components of the velocity vector  in the directions 
of the y and x axes, the p re s su re ,  and the density; HO is the HeaviSide step function. 

The ver t ica l  deviation of a liquid part icle  f rom its unperturbed state,  V (y, z, t), is determined f rom the 
l inearized condition O~[Ot =v. 

Introducing the dimensionless  var iables  

(y., z., h . ,  H . ,  "q.)=(l]R)(y,  z,  h, t t ,  ~1), t . =  V- -~ t ,  (v . ,  w. )=( t lRV-g--~ (v, w) 

(from this point on we shall omit the asterisk),  reducing the equations (2.1) to a single equation for v, and apply- 
ing, as in Sec. 1, the double Four ie r  t r ans fo rm (1.3) (the t ime t plays the role of the longitudinal coordinate x 
in the preceding discussions) ,  we obtain 
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l " - v ~ ( t - ~ - , ) I =  2~,,, , -- ~ [Y T h) H (y + h -l- |) H (i -- Y -- h) sia (v ] f i  _-(y _~ }~)~) 

with boundary condi t ions  

I := 0, g = 0, y = --H. 

(2,2) 

The solut ion o f  Eqo (2.2) ou t s ide  the spot  has  the f o r m  

] = neJ~(v/F)|sgn(y q- h)e~,lr+hl q- e-~(~ +~1 - -  2ehMh.shM(y q- tt)/shAfltl, 
w h e r e  M = r i l l - -  t / ~ ;  J~ is the B e s s e l  funct ion o f  the f i r s t  kind and s econd  o r d e r .  

In the p rob l em,  as  be fore ,  what  we a re  ma in ly  in t e re s t ed  in is the inves t iga t ion  o f  the in terna l  waves  far  
f r o m  the p e r t u r b a t i o n ,  and t h e r e f o r e  in c a r r y i n g  out the inverse  F o u r i e r  t r a n s f o r m s ,  ana logous  to (1.4) and 
(1.5), we have left  on ly  s i m p l e  in tegra l s ,  which a re  r e s i d u e s  a t t h e p o l e s  of  the in tegrand.  The d e s i r e d  solut ion 
has  the f o r m  

v(r, tp, y ) = A  J , ( e tg0 )  ~ ~ cos .BO+dO + ~ J , z ( e t g 0 ) ~  osl--ff-).BD_dO 
n = l  r n = !  

w h e r e  
2he n . inky 

A = --ff~-; B = c ~ S m ~ } ;  D+ = sin(rk n sin(0 • q0); 

N = E[H etg 0/hi; kn = ]Si" - -  (nn tg O/H)2/sin 0. 
The o the r  d e s i r e d  funct ions have analogous  f o r m s ;  for  w 

fo r  ~/ 

A = - -  ---ff~, B = ~ cos . , D+ ----- ~ cos (rka sin (0 • ~)), 

A = - f f F ,  B =  knsin0 eos"2"~ sm , D• 

In the case  of  an unbounded liquid we find, in p a r t i c u l a r ,  fo r  

whe re  qb(k, 
t i ona ry  method for  y2 . z  2 . t 2 _  ~o y ie lds  

n(r, ~, y) ( y =  y + h) 
r ~/2 i/sin 0 

~q(r, % y') = ~ -  dO (/) (k, 0) eos(rksin (0 + r -~ 

n/2 t / s in  0 

-F .f dO S qb (k, 0) cos (rk sin (0--(p)) dk], 
r 0 

0) = J~(etg e) sin (y'cos 0Vl'/sin~0 - -  kS)~ sin 0. An a sympto t i c  e s t i m a t e  of  these  in tegra l s  by the s t a -  

ez j zt . [ yt \ 
= ). (2.4) 

This expression coincides, to within a factor of 2, with formula (26) of [8]. In [3], in the investigation of the 
internal waves generated by the collapse of a completely mixed spot of radius 1% the latter was limited by a 
quadrupole with moment 7rR4/4. It was shown that at t -~o, 

/ 

~1 = 8 02 + ~)3 sin ~ , 

which  coinc ide  with (2.4) fo r  zt  <~" yZ . z2 .  

Equat ion (2.3) was  in tegra ted  n u m e r i c a l l y  (cons iderab le  di f f icul t ies  w e r e  encoun te red  in us ing  the s t a -  
t i o n a r y - p h a s e  method  for  an a sympto t i c  e s t i m a t e  of  the in tegra l s ) ,  and the i s o c u r v e s  of  the funct ion 50.~/R for  
the value t v ~ = 1 5  a re  shown in Fig .  2 for  I-I/R =10, h/R =4,  and ~=1.  

The shaded h a l f - d i s k  c o r r e s p o n d s  to the o r ig ina l  pos i t ion  of  the spot~ ( ~ a l i t a t i v e l y ,  Fig.  2 is a repe t i t ion  
of  Fig.  1. In F igs .  1 and 2, in view of  the diff icul ty  of  the g r aph i ca l  mapping,  we do not  show the flow in the 
ne ighborhood  of  the l~ in t  y = - h ,  z =0.  It  should be no ted tha t  the flow in this  r eg ion  is d e s c r i b e d  with suf f ic ient  
a c c u r a c y  by the so lu t ions  (1.8) and (2.4), r e s p e c t i v e l y .  
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We can also propose  another  method for solving these problems  which is based on the use of the method 
of ref lec t ions .  In i,lvestigating the internal  waves far  f rom the source  of per turbat ion,  knowing the solutions 
(1.8) and (2.4) and introducing in an unbounded liquid an infinite se r i e s  of imaginary per turbat ions ,  equivalent 
to the initial per turba t ion  and symmet r i ca l l y  ar ranged with respec t  to the hor izontal  planes y = 0 and y = - H ,  
we obtain for the case of a liquid of finite depth a solution in the fo rm 

11 (x, g, z) ----- q(x, g, z) ~- 2 [q (x, gi~- 2nil, z) 4- ~:(x, g -- 2nil, z)], 
(2.5) 

n =  1 

where  ~(x,y, z) = T0(x, y ~-h, z) * T0(x, y - h ,  z), 770(x , y, z) is the solution (1.8) for  the f i r s t  type of perturbations 
or  (2.4) for  the second type of per turbat ions  [in this case,  in (2.5) the var iable  x must  be replaced by t]. A 
compar i son  of the resu l t s  obtained by using (2.5) and the solutions (1.10), (2.3) yields good agreement .  
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I N T E R A C T I O N  B E T W E E N  T U R B U L E N T  B O U N D A R Y  L A Y E R S  

IN A R I G H T  D I H E D R A L  C O R N E R  

V. I .  K o r n i l o v  and  A . M .  K h a r i t o n o v  UDC 532.526.4 

The interaction between two adjacent turbulent boundary layers which occurs in longitudinal flow over 
intersecting surfaces pertains to complex forms of viscous flow. Such flow is very often encountered in prac-  
tice, for instance, at the joints between individual parts  of aircraf t ,  in flow around cress-shaped and V-shaped 
wings, etc. However, in spite of its practical  importance, the nature of viscous interaction in corner  configura- 
tions has not yet been investigated experimentally to. a sufficient extent. As a rule, no allowance is made for 
the three-dimensional nature of corner  flow in theoretical  investigations, and, therefore,  the results a re  in 
poor agreement with experimental data. 

The present  article is concerned with an experimental  investigation of the integral character is t ics  of the 
boundary layer,  determination of the extent of the interaction zone for different Reynolds numbers, and a study 
of the effect of the longitudinal p ressure  gradient. 

The experiments are performed in the low-turbulence T-324 aerodynamic tunnel at the Institute of 
Theoretical  and Applied Mechanics, Siberian Branch, Academy of Sciences of the USSR [1], using a right dihe- 
d ra l s imula to r  (Figo 1), Take-off openings, 3, with a diameter  of 0.5 mm are provided on both sides 1 for 
measuring the static pressure .  Both the fore and aft parts  of the dihedral sides have a semielliptical shape 
with a 1 : 12 ratio of the semiaxes.  The static pressure  along the length of the simulator is varied by means of 
two rear -end  flaps, 2. A clear-plast ic  dummy wall, 4, is mounted in the working section of the aerodynamic 
tunnel in order  to ensure the assigned longitudinal p ressure  gradient at the surface of the simulator. The 
pressure  gradient var ies  according to the degree to which the operating section is blocked, while the gradient 
sign is determined by the shape of the contour of the operating section artifically created by the dummy wail. 
Both positive and negative static p ressure  gradients d~/dx (~'= (p-pco)/qr is the pressure  coefficient) can there-  
by be created at the simulator surface.  

The experiments are performed at unperturbed flow velocities from 10 to 52 m/sec, which corresponds 
to individual Reynolds numbers Re 1 = (0.7-3.2) �9 106 m -1. A well-developed turbulent boundary layer ~s pro-  
duced by means of a turbulence generator  consisting of coarse-grained emery  paper 10 mm wide, which is 
pasted on along the spread of the corner  at a distance of 10 mm from the leading edge. 

The total and the static pressures  and the direction of the velocity vector in the boundary layer are mea- 
sured by means of miniature pneumatic tubes, 5, the geometric character is t ics  of which are shown in Fig. 1. 
Special calibration checks have shown that, with an accuracy to 1%, the flat and the cylindrical tubes are not 
sensitive to downwashes to up to 9 ~ and 22 ~ respectively.  Similar calibrations have also been performed in 
the investigated velocity range for a double-barrel led pneumatic tube, which is used for determining the direc-  
tion of the velocity vector  in the boundary layer of the dihedral corner .  The thus obtained data on the down- 
wash angles in two mutually perpendicular planes and the knowledge of the longitudinal velocity component 
make it possible to determine the t ransverse  velocity component. 

In order  to verify the hypothesis concerning the constancy of static pressure  across the boundary layer,  
we measured the Static p ressure  profiles by means of a special microtube, which was also calibrated before ,  
hand. The results of these experiments have shown that the maximum change in static p ressure  along the 
height of the boundary layer  occurs in the bisecting plane and is equal to *0.007qoo. Allowance for this degree 
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